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Abstract  

This paper presents a fault detection and isolation (FDI) method applied to a wind turbine system. 

The approach utilizes a nonlinear sliding mode observer (SMO) to effectively reconstruct faults in 

both the hydraulic pitch actuator and generator torque actuator of the wind turbine. A Linear Matrix 

Inequality (LMI) optimization approach is employed for the design. The blade pitch angle and 

generator torque in the wind turbine have significantly different orders of magnitudes, rendering 

them vulnerable to faults of different magnitudes. This discrepancy poses a challenge for the 

simultaneous reconstruction of faults. To resolve this challenge, a modification is made to the 

observer. To examine the effectiveness of the modified SMO, two fault scenarios were considered 

for the hydraulic pitch actuator and generator torque actuator. In the first case, faults are introduced 

separately, while in the second case, faults occur simultaneously. Simulation results demonstrate 

accurate detection, isolation, and reconstruction of these faults, whether in the case of separate or 

simultaneous fault occurrences. 
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List of Symbols/Acronyms 

 

DIS – discontinuous injection switching 

FDI – Fault Detection and Isolation; 

FTC – fault tolerant control; 

SMO–Sliding Mode Observer; 

WTBM–wind turbine benchmark model; 

𝐵𝑑𝑡– drive train torsion damping coefficient [N.m.s.rad-1]; 

𝐵𝑟–viscous friction of the low-speed shaft [N.m.s.rad-1]; 

𝐵𝑔–generator viscous friction [N.m.s.rad-1]; 

𝐶𝑞(𝛽, 𝜆)–torque coefficient; 

𝐽𝑟– inertial moment of the low-speed shaft [kg.m-2]; 

𝐽𝑔–generator moment of inertia [kg.m-2]; 

𝐾𝑑𝑡– torsional stiffness of the drive system [N.m.rad-1]; 

𝑁𝑔–gear ratio; 

𝛽– pitch angle [deg]; 

β
re

–reference pitch angle [deg]; 

𝜏𝑔–generator torque [N.m]; 

𝜏𝑔𝑟𝑒 –reference generator torque [N.m]; 

𝜏𝑟–rotor torque [N.m]; 

𝜃– Drive train torsion angle [rad]; 

𝜆 –tip speed ratio; 

𝜉 – damping coefficient; 
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𝛼𝑔𝑐⁄ – time constant [𝑠]; 

𝜔𝑔–generator angular speed [𝑟𝑎𝑑. 𝑠−1]; 

𝜔𝑟–rotor angular speed [𝑟𝑎𝑑. 𝑠−1]; 

𝑣𝑤–wind speed [𝑚. 𝑠−1]; 

𝑤𝑛 – natural pulsation [𝑟𝑎𝑑. 𝑠−1]. 

 

1. INTRODUCTION  

 

In 2022, global wind energy capacity increased 

by 78 GW, reaching a total of 906 GW. 2023 is 

projected to be the first year to exceed 100 GW in 

new capacity, with a 15% year-on-year growth rate 

forecasted. Over the next five years (2023-2027), 

680 GW of new capacity is expected, averaging 136 

GW per year. By 2030, an additional 143 GW is 

anticipated, 13% higher than previous estimates, for 

a total of 1221 GW added from 2023 to 2030. These 

figures highlight the substantial growth and potential 

of wind energy on a global scale [1]. 

The rapid growth of wind turbines necessitates 

greater efficiency but faces complexities and 

susceptibility to faults due to environmental factors 
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and manufacturing defects [2]. Their remote, 

isolated locations make maintenance challenging, 

potentially leading to breakdowns that can influence 

electricity production. Consequently, there is a 

growing interest in employing FDI methods, 

especially for critical components like pitch and 

drive train systems, to address these challenges in 

wind turbine systems [3-4].  

Specifically for fault detection purposes, a 

validated WTBM was developed by Odgaard et al. 

[5]. Building upon this model, numerous approaches 

have been introduced in recent years in the fields of 

model-based fault diagnosis (FD) and FTC for 

WTBM [6-7]. FDI in wind turbines aims to issue 

timely warnings for abnormal situations and locate 

their source. FDI methods fall into two categories: 

data-driven and model-based. Data-driven methods, 

such as those employing fuzzy systems and neural 

networks, can be effective but may experience 

delays due to the requirement for data collection [8]. 

Model-based FDI techniques for wind turbines 

employ computational representations to mimic how 

these systems function in both standard and 

malfunctioning states. These strategies hinge on 

matching the outcomes from these computational 

models to actual sensor readings to pinpoint and 

separate out faults. A commonly used approach in 

this field is the observer-based technique. This 

approach entails creating 'observers,' alternatively 

referred to as estimators or filters, which make use 

of sensor data to gauge the wind turbine's internal 

conditions. When these computed conditions are set 

against real-world measurements, any discrepancies 

can be identified as faults, which can then be 

attributed to specific issues. Various specialized 

observer-based FDI methodologies have been 

designed, particularly for wind turbine systems [9-

10]. Cho et al. [11] utilize a Kalman filter and 

inference algorithms to detect, isolate, and control 

faults in the blade pitch systems of floating wind 

turbines. In [12], an adaptive observer-based scheme 

using the Fast Adaptive Fault Estimation (FAFE) 

algorithm swiftly detects sensor and actuator faults, 

enabling controllers to stabilize and compensate for 

these faults more effectively than baseline methods. 

Most FDI methods for wind turbines rely on 

generating residuals, which compare actual system 

outputs to observer predictions. These approaches, 

however, are susceptible to false alarms due to 

environmental disturbances and model uncertainties. 

To be effective, FDI schemes must therefore be 

robust, minimizing sensitivity to these uncertainties 

while maintaining alertness to actual faults [13]. In 

[14], a robust fault estimation method is presented. 

The proposed observer-based scheme adeptly 

identifies sensor and actuator faults within wind 

turbines, employing a two-step approach to 

distinguish unknown inputs from actual faults. Shi 

and Patton [15] crafted a unique Active FTC system 

for large, non-linear rotor wind turbines using 

observer-based methods, leveraging Linear Matrix 

Inequality (LMI) within a Linear Parameter Varying 

(LPV) framework. The scheme focuses on hiding 

sensor faults and compensating for actuator faults. 

Sliding Mode Observers are extensively 

employed for robust fault detection, isolation, and 

fault-tolerant control in wind turbines due to their 

inherent robustness [16-18]. While these techniques 

are generally effective, they do have a weak point: 

they often rely on predefined thresholds based on 

known fault behaviour, which presents a major 

limitation for this technique. In [19], a sliding mode 

observer is employed with a suggested modification 

for the nonlinear switching term to reconstruct 

sensor faults in wind turbines. The accuracy is 

satisfactory; however, actuator faults remain 

unaddressed. 

This paper employs a 4.8 MW wind turbine 

benchmark model to analyze faults across different 

components. It introduces an FDI scheme capable of 

not only detecting but also accurately reconstructing 

faults, making it suitable for FTC schemes requiring 

knowledge of fault magnitudes. Additionally, a 

modified fault estimation approach based on the 

SMO is presented. A Matrix Inequality (LMI) 

optimization approach is utilized for the design of 

the SMO aimed at proficiently detecting, isolating, 

and estimating actuator faults in the WTBM 

impacting blade pitch angle actuator and generator 

torque actuator. This modification addresses the DSI 

of the observer for precise reconstruction, notably in 

simultaneous faults scenarios. The simulations are 

implemented within the MATLAB/Simulink 

environment. The structure of this paper is outlined 

as follows: Section 2 provides a concise overview of 

the Wind Turbine Benchmark Model (WTBM); 

Section 3 elaborates on the fault estimation 

approach, formulation of the actuator faults, 

suggested enhancements to the SMO, and numerical 

specifications for its parameters; Section 4 explores 

different fault scenarios and expounds on the 

simulation results; finally, Section 5 summarizes the 

conclusions derived from the study. 

 

2. MODEL OF WIND TURBINE 

 

This study is based on a model of a three-bladed 

horizontal axis wind turbine, similar to the one 

studied in [5]. The system layout comprises 

interconnected subsystems: the Blade & Pitch 

System, Drive Train, Converter, and Generator, as 

illustrated in Figure 1. Aerodynamic behaviour, 

influenced by blade pitch angles, rotor 

characteristics, and wind speed, powers the wind 

energy system by transferring aerodynamic torque 

from the drive train to the generator, where it is 

converted into electrical energy. A controller, 

detailed in [5], adjusts blade pitch angles and 

generator torque to meet operational requirements. 

The ensuing description elucidates the mathematical 

representation for each constituent of the WTBM 

depicted in Figure 1. 
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Fig. 1. Synopsis of the WTBM [5] 

 

2.1. Subsystem: Blade - Pitch  

This subsystem combines the aerodynamic model, 

blades, and pitch system, with the aerodynamic 

torque being determined by: 

𝜏𝑟 =
𝜌𝜋𝑅3𝐶𝑞(𝛽(𝑡), 𝜆(𝑡))𝑣𝑤

2

2
                         (1) 

The pitching system encompasses three 

actuators, each embedded with an internal controller. 

These actuators, denoted as actuator i (where i can 

take values 1, 2, or 3), are responsible for adjusting 

the pitch angle βi of the blades. The following 

second-order transfer function represents this 

subsystem: 

βi(s)

βre,i
=

ωni
2

s2 + 2. ξi. ωni . s + ωni
2                 (2) 

In the absence of faults, all values of βi, ωni, and 

ξi are equal. However, if faults occur, these values 

can vary from one another. In the subsequent 

analysis, only a single pitch actuator is taken into 

account. 

 

2.2. Subsystem: Drive train  

Utilizing a simplified two-mass model, the 

representation of the drive train system is achieved. 

This allows the drive train model to be depicted 

as:

{
 
 

 
 𝐽𝑔. �̇�𝑔 = −(

𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔
2 +𝐵𝑔)𝜔𝑔 +

𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔
𝜔𝑟 +

𝜂𝑑𝑡𝐾𝑑𝑡

𝑁𝑔
𝜃 − 𝜏𝑔      (3)

𝐽𝑟�̇�𝑟 =
𝐵𝑑𝑡

𝑁𝑔
𝜔𝑔 − (𝐵𝑑𝑡 +𝐵𝑟)𝜔𝑟 − 𝐾𝑑𝑡𝜃 + 𝜏𝑟                             (4)

�̇� = 𝜔𝑟 −
1

𝑁𝑔
𝜔𝑔                                                                                 (5)

 

 

2.3. Subsystem: Generator-Converter 

In this block, mechanical energy is 

transformed into electrical energy. This subsystem is 

modeled by first-order transfer functions: 
𝜏𝑔

𝜏𝑔𝑟𝑒
=

1

1 + 1 𝛼𝑔𝑐⁄ 𝑠
                                      (6) 

The output power generated is expressed as: 

Pg = ηg. τg. ωg                                             (7) 

 ηg refers to the efficiency of the generator. 

By combining and integrating the 

aforementioned subsystems, the wind system is 

represented in the state space using the following 

model: 

{
ẋ(t) = A x(t) + B u(t),                                          (8)

y(t) = C x(t).                                                           (9)
 

The state vector, denoted as x =

[ωg ωr θ    β̇ β τg]
T, represents the system's 

state. The control input vector, u =

[τgre τr βre]T, represents the inputs that control 

the system.  

𝐵 =

[
 
 
 
 
 
 
0 0 0

0
1

𝐽𝑔
0

0 0 0
0 0 𝜔𝑛

2

0 0 0
𝛼𝑔𝑐 0 0 ]

 
 
 
 
 
 

,𝐶 =

[
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 

 ,  

𝐴 =

[
 
 
 
 
 
 
 𝑎11

𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔𝐽𝑔

𝜂𝑑𝑡𝐾𝑑𝑡

𝑁𝑔𝐽𝑔
0 0 − 1

𝐽𝑔

𝐵𝑑𝑡

𝑁𝑔𝐽𝑟
−
𝐵𝑑𝑡+𝐵𝑟

𝐽𝑟
−
𝐾𝑑𝑡

𝐽𝑟
0 0 0

− 1

𝑁𝑔
1 0 0 0 0

0 0 0 −2𝜉𝜔𝑛 −𝜔𝑛
2 0

0 0 0 1 0 0
0 0 0 0 0 −𝛼𝑔𝑐]

 
 
 
 
 
 
 

, 

a11 = −

ηdtBdt
Ng
2 +Bg

Jg
. 

 

3. SCHEME FOR ESTIMATING FAULTS 

 

3.1. Design of sliding mode observer 

The system of equations (10)-(11) describes the 

wind system that can be affected by an actuator fault:  

 

{
ẋ(t) = A x(t) + B u(t) + D fac(t, x, u)        (10)

y(t) = C x(t)                                                    (11)
 

 

Let A ∈ ℝn×n,  C ∈ ℝp×n, B ∈ ℝn×m, and D ∈
ℝn×q, where p ≥ q. Assuming that the matrices C and 

D are full rank, and that the function fac represents a 

bounded actuator fault satisfies: 

                         ‖𝑓𝑎𝑐‖ ≤ 𝜆‖𝑢‖ + 𝜎                         (12)  

Where: 𝜆 is a known positive scalar and 𝜎 is a 

known positive function. 

Aiming to craft an observer, its primary function 

is to estimate the system's state vector x̂ and its 

output vector ŷ from the signals u(t) and y(t). With 

the system state assumed to be unknown, our 

ultimate objective is to ensure that the output error 

εy(t) = ŷ(t) − y(t) promptly converges to zero, 

irrespective of any faults. Edwards and Spurgeon 

[19] proposed an observer: 

�̇̂� = 𝐴�̂� + 𝐵𝑢 − 𝐺𝑙𝜀𝑦 + 𝐺𝑛𝜗.                 (13) 

 𝜗 the DIS, is given by 

𝜗 = {
−𝜅 ‖𝑃0 �̃�2‖

εy

‖εy‖
,          𝑖𝑓 εy ≠ 0

0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (14 ) 

 

The function 𝜅 satisfies: 

                                     𝜅 > ‖𝑓𝑎𝑐‖                       (15) 

If the state estimation error 𝜀 = �̂� − 𝑥, then  

             𝜀̇ = 𝐴0𝜀 + 𝐺𝑛𝜗 − D fac                      (16) 

Where 𝐴0 = 𝐴 − Gl𝐶. 
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The matrices P0, �̃�2, Gl, and Gn are to be 

determined.  

 

3.2. Observer Modifications 

The wind turbine outputs, specifically ωr, ωg,

β and τg differ substantially in magnitude, with 

values around 1rad/s, 102rad/s,   1deg ,  and 

104N.m respectively. Equations (39) and (40) allow 

for the reconstruction of actuator faults, emphasizing 

the dependence on the scalar gain, nearly matching 

the fault's peak magnitude. While the gain, κ, must 

be tailored for each output, the conventional SMO 

uses a static κ, hindering accurate fault detection for 

all outputs. Continually adjusting κ, especially with 

concurrent faults across various outputs, is 

unfeasible. As a solution, κ is substituted with κ′ =

α‖P0εy‖, and εy is replaced by P0εy, leading to a 

revised switching term: 

𝜗 = − κ′. ‖P0 D̃2‖
P0εy

‖P0εy‖
                       (17)  

This modification allows for a more adaptive 

approach, where α‖P0εy‖ is utilized to adjust κ based 

on the specific output being considered. The scalar α 

is chosen such that 

𝛼 > 𝜆‖𝑢‖ + 𝜎                                (18) 
 

3.3. A framework for SMO desing 

The integration of Linear Matrix Inequalities 

(LMI) in fault reconstruction holds significant 

importance. LMIs provide a powerful mathematical 

framework, enabling precise modelling of dynamic 

relationships and establishing essential stability and 

performance conditions to ensure the validity of 

estimations. By optimizing observer gains through 

LMIs, the quality of fault reconstruction improves, 

and uncertainties inherent in operational variations 

are effectively managed, ensuring the robustness of 

estimations. This capability facilitates practical 

implementation, contributing to reliable and efficient 

fault reconstruction. Furthermore, Edwards et al. 

[19] propose a systematic method for computing 

gains 𝐺𝑙 and 𝐺𝑛, but this method does not fully 

exploit all available degrees of freedom. The 

following section explores the design of matrices 𝐺𝑙, 
𝐺𝑛, and 𝑃0  based on an LMI  approach, aiming to 

maximize the utilization of all available degrees of 

freedom. 

It is shown in [20] that the observer of the form 

(13) exists if and only if: 

1. rank(CD)=q, 

2. invariant zeros of (A,D,C) are stable 

Furthermore, if these two conditions are 

satisfied, then there exist a change of coordinates 𝑇0 

such that the previous system can be written as: 

              {
ẋ(t) = A x(t) + B u(t) + D fac(t, x, u)    (19)    

y(t) = C x(t)                                                 (20)     
 

where 𝑥 = 𝑇0𝑥. The triple (A , D, 𝐶) has the 

following structure: 

𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

]  , 𝐷 = [
0
𝐷2
] , 𝐶 = [0 𝑇]         (21) 

Where T ∈ ℝp×p is orthogonal. 

The change of coordinates applied to relation 

(14) allows for obtaining 

�̇̂� = 𝐴�̂� + 𝐵𝑢 − 𝐺𝑙𝜀𝑦 + 𝐺𝑛𝜗                     (22) 

And define 𝐴0 = 𝐴 − Gl𝐶 .The gain matrix 𝐺𝑙 is 

to be determined but 𝐺𝑛 is given by: 

𝐺𝑛 = [
−𝐿𝑇𝑇

𝑇𝑇
]                                    (23 

Where 𝐿 ∈ ℝ(n−p)×p and has the structure 𝐿 =

[𝐿 0] with 𝐿 ∈ ℝ(n−p)×(n−q) to be determined. 

Proposition: If a positive definite Lyapunov 

matrix 𝑃 exists such that 𝑃𝐴0 + 𝐴0
𝑇𝑃 < 0, with the 

specified structure: 

𝑃 = [
𝑃1 𝑃1𝐿

𝐿𝑇𝑃1 𝑃0 + 𝐿
𝑇𝑃1𝐿

] > 0               (24) 

Where  P1 ∈ ℝ
(n−p)×(n−p) and P0 ∈ ℝ

p×p, then 

the error in equation (16) is quadratically stable. 

 

Proof: Let's consider the quadratic form 

   𝜈 =  𝜀𝑇𝑃 𝜀                             (25)  

as a candidate Lyapunov function where  𝜀 = 𝑇0𝜀.  

�̇� = 𝜀𝑇( 𝐴0
𝑇𝑃 +  𝑃𝐴0)𝜀 + 2𝜀

𝑇𝑃𝐺
𝑛
𝜗

− 2𝜀𝑇𝑃𝐷𝑓𝑎𝑐                               (26) 
From (21),(23), and (24)  

𝑃𝐺
𝑛
= [

0

𝑃0𝑇
𝑇] = 𝐶𝑇𝑃0                     (27) 

Where 𝑃0 = 𝑇𝑃0𝑇
𝑇 

Employing the specific structure of L and D, 

𝐿𝐷2 = 0  as a result 

𝑃𝐷 = [
0

𝑃0𝐷2
] = 𝐶𝑇𝑃0�̃�2               (28)    

Where �̃�2 = 𝑇𝐷2 which implies ‖�̃�2‖ = ‖𝐷2‖ 

By incorporating the modification of ϑ into 

equation (17), equation (26) becomes 

�̇� = 𝜀𝑇( 𝐴0
𝑇𝑃 + 𝑃𝐴0)𝜀 + 2𝜀𝑦

𝑇𝑃0𝜗 − 2𝜀𝑦
𝑇𝑃0�̃�2𝑓𝑎𝑐 

≤ 𝜀𝑇 ( 𝐴
0

𝑇𝑃 + 𝑃𝐴
0
) 𝜀 − 2𝛼‖P0εy‖

2
. ‖P0 D̃2‖

− 2𝜀𝑦
𝑇𝑃0�̃�2𝑓𝑎𝑐 

Utilizing equations (12) and (18) 

�̇� ≤ 𝜀𝑇( 𝐴0
𝑇𝑃 + 𝑃𝐴0)𝜀− 2[𝜆‖𝑢‖ + 𝜎]‖P0εy‖

2
 ‖P0 D̃2‖

+ 2‖ D̃2‖ [𝜆‖𝑢‖ + 𝜎] ‖P0εy‖ 

�̇� ≤ 𝜀𝑇( 𝐴0
𝑇𝑃 + 𝑃𝐴0)𝜀 − 2. 𝐽 

Where  
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𝐽 = [𝜆‖𝑢‖ + 𝜎]. [ ‖P0 D̃2‖‖P0εy‖ + ‖ D̃2‖ ]. ‖P0εy‖ ≥ 0 

 

Since 𝑃𝐴0 + 𝐴0
𝑇𝑃 < 0 it follows that �̇� < 0 for all 

𝜀 ≠ 0 and quadratic stability is proved. 

 

3.4. Procedural Synthesis of Matrices 𝑷and 𝑮𝒍 

 a method for observer design through the use of 

LMIs was put forth by Alwi et al. [20]. This design 

approach can be succinctly described as: 

Matrices 𝑃 and 𝐺𝑙 are selected to ensure satisfaction 

of the subsequent matrix inequality 

𝑃𝐴0 + 𝐴0
𝑇𝑃 < −𝑃𝑈𝑤𝑃 − 𝑃𝑮𝒍𝑉𝑤𝐺𝑙

𝑇𝑃         (29) 

𝑈𝑤 ∈ ℝ
n×n  and 𝑉𝑤 ∈ ℝ

p×p are presumed to be 

symmetric positive definite design weighting 

matrices, assumed known, with P structured 

according to equation (24). By introducing the 

matrix 𝑌 = 𝑃𝑮𝒍 and substituting the expression for 

A0, inequality (29) takes the following form 

𝑃 𝐴 + 𝐴𝑇𝑃 + (𝑌𝑇 − 𝑉𝑤
−1𝐶)𝑉𝑤(𝑌

𝑇 − 𝑉𝑤
−1𝐶)

− 𝐶𝑇𝑉𝑤
−1𝐶 + 𝑃 𝑈𝑤𝑃 < 0       (30) 

 

The choice  𝑌𝑇 = 𝑉𝑤
−1𝐶 implies  

 

𝑃 𝐴 + 𝐴𝑇𝑃 − 𝑉𝑤
−1𝐶 + 𝑃 𝑈𝑤𝑃 < 0        (31)    

 

And  𝑮𝒍 = 𝑃
−1𝐶𝑇𝑉𝑤

−1 

 

The problem under consideration involves 

minimizing trace(𝑃−1) while satisfying inequality 

(31). The matrix inequality in (31), by using the 

Schur complement, is equivalent to 

 

[
𝑃𝐴 + 𝐴𝑇𝑃 − 𝐶𝑇𝑉𝑤

−1𝐶 𝑃

𝑃 −𝑈𝑤
−1
] < 0    (32) 

 

[
−𝑃 𝐼
𝐼 −𝑋

] < 0                              (33) 

 

Where X, P ∈ ℝn×n are s.p.d matrix variables. 

Standard LMI software can be employed to resolve 

simultaneously LMIs (32) and (33), This enables the 

synthesis of P, which has the structure: 

𝑃 = [
𝑃11 𝑃12
𝑃12
𝑇 𝑃22

] > 0                      (34) 

Where P11 ∈ ℝ
(n−p)×(n−p), P22 ∈ ℝ

p×p  and 

P12 = [P121 0]  with P121 ∈ ℝ
(n−p)×(p−q), P22 ∈

ℝp×p, define: 

𝐿 = [𝑃11
−1𝑃121 0]                 (35) 

The matrix 𝑃0, which appears in (37), is given by: 

𝑃0 = 𝑇(P22 − P12
T P11

−1P12)T
T                (36) 

To exploit the gains Gl and Gn in relation (13), it is 

necessary to multiply them by the inverse of a 

transformation matrix T0 [19], as in equations (37) 

𝐺𝑙 = 𝑇0
−1𝑃−1𝐶𝑇𝑉𝑤

−1  𝑎𝑛𝑑 𝐺𝑛 = 𝑇0
−1 [−𝐿𝑇

𝑇

𝑇𝑇
] 𝑃0

−1  (37)   

Subsequently, a coordinate transformation is 

implemented: 

𝑇∗ = [
𝐼𝑛−𝑝 𝐿

0 𝑇
], transforms the triplet (A, D, C) 

to: 

�̃� = [
�̃�11 �̃�12
�̃�21 �̃�22

] , �̃� = [
0
�̃�2
] , �̃� = [0 𝐼𝑝]    (38) 

Where �̃�11 = 𝐴11 +  𝐿 𝐴21 is stable and �̃�2 = 𝑇𝐷2 

The reconstructed actuator fault is given by: 

𝑓𝑎𝑐 ≈ �̃�2
+
𝑃0
−1  𝜗 é𝑞                     (39) 

Where ϑ éq is the equivalent DIS, which has the 

following structure: 

ϑ éq = − α‖P0εy‖ . ‖P0 D̃2‖
P0εy

‖P0εy‖ + δ 
     (40) 

 

α is chosen to be 2.5. 104, while δ represents a 

small positive numerical value. 

 

In this paper, the matrix D is chosen to be equal 

to B. 

 

3.5. Formulation of the actuator faults 

Fault reconstruction holds crucial significance, 

particularly in wind energy, where it enhances 

operational reliability by identifying and addressing 

potential failures. Facilitating early detection of 

anomalies, it strengthens operational safety, 

minimizes disruptions, and optimizes system 

performance. Additionally, fault reconstruction 

contributes to reducing maintenance costs by 

intervening before issues lead to major failures. It 

also provides a better understanding of system 

operation in the presence of faults, guiding the 

development of more resilient and robust solutions. 

In summary, fault reconstruction plays a pivotal role 

in proactive maintenance, ensuring safety, and 

enhancing operational efficiency in critical contexts 

such as wind energy. 

Five specific faults can affect pitch actuators: 

wear of the pump, leakage in the hydraulic system, 

high air content in the hydraulic oil, blockage in the 

valve, and blockage in the pump. Notably, valve 

blockage and pump blockage exhibit similar effects 

on the pitch system, leading to their classification as 

the same fault in many cases. On the other hand, 

hydraulic leakage, pump wear, and high air content 

in the hydraulic oil are considered faults that alter the 

dynamics of the pitch system, causing a deceleration 

in control actions and subsequently resulting in 

suboptimal power production. Consequently, these 

three faults are treated similarly in the analysis. 

The modifications in the dynamics of the pitch 

system stem from the changes in parameters ξi and 

ωn denoted in equation (2), where they take 

defective values  𝜉𝑓 and ωf. These altered values 
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affect the matrices A and B in the state-space 

representation, in equation (8). 

This paper specifically focuses on hydraulic 

leakage in the considered wind turbine model. Two 

scenarios are examined: an extreme fault and a 

moderate fault. The parameters associated with these 

scenarios are organized and presented in Table 1. 

 
Table 1. Pitch parameters and fault indicators in 

hydraulic leakage faults 

Fault 

scenario 
ω (

rad

s
) 𝜉𝑖 αf 

Fault-free ωn = 11,11 ξ = 0,6 0 

Extreme 

fault 
ωl = 3,42  ξl = 0,9 1 

Moderate 

fault 
ωf = 6,72  ξf = 0,2 0.7 

 

ωn and ξ are the fault free parameters, ωl and  ξl 
are the limit parameters in hydraulic leakage that 

correspond to 50% of the nominal pressure, ωf and 

 ξf  are the parameters faulty in hydraulic leakage. It 

can be written as:  

ωf
2 = ωn

2 + αf(ωl
2 −ωn

2)                    (41) 

2ξfωf = 2ξωn + αf(2ξlωl − 2ξωn)    (42) 

 

Where αf ∈ [0,1] is the fault indicator for 

hydraulic leakage αf = O in free fault and αf = 1 if 

the pressure loses half of its nominal value, it is noted 

that α̇f(t) ≥ 0  for all t since a leak cannot be stopped 

without system repair.  

The generator and converter system can have two 

types of faults: a shift in dynamics due to changes in 

the generator's specific parameter αgc, or an offset in 

the converter's torque. These issues arise from 

internal complications, like faults in the converter's 

electronics or inaccuracies in torque estimation [5]. 

These problems can lead to serious consequences, 

notably a slower control of torque due to changes in 

dynamics. The offset fault, which leads to below-

optimal wind turbine power output and develops 

quickly, is deemed a medium-severity issue. The 

previously stated faults that influence the actuation 

of the generator are modelled as: 

�̇�𝑔 = −αgc τg + αgcτgref + fτg        (43) 

Where: fτg represents the fault affecting the 

actuation of the generator and converter. 

The matrices 𝐴𝑓 and 𝐵𝑓 in faulty condition are 

written as: 

Af = A + ΔA                         (44) 
Bf = B + ΔB                          (45) 

Where Δ𝐴 𝑎𝑛𝑑  Δ𝐵  represent the deviation from 

nominal operation due to the fault. 

Define  ℎ = 𝜔𝑙
2 − 𝜔𝑛

2 ,  𝑔 = 2𝜉𝑙𝜔𝑙 − 2𝜉𝑛𝜔𝑛  and  

 fac = [f1 f2 f3]
T
.  

By employing equations (41), (42) and (43), 

along with the fact that D is equal to B in equation 

(10), and by establishing an identification between 

the relationships expressed in equations (44) and 

(45) on one side, and equation (10) on the other side, 

we can deduce the following: 

f1 =  
 fτg

αgc
, f2 = 0, and  f3 =

αf

𝜔𝑛
2 (h βr −  g β̇)   (46)      

 Therefore, the reconstruction of  fac provides 

access to the fault signal   fτg and the fault indicator 

αf. 

 

3.6. Observer parameters 

The primary energy source for the wind system 

is the aerodynamic torque, as indicated by equation 

(1), serving as the second input for equation (8). The 

wind turbine controller provides the first and third 

inputs. Detailed technical characteristics and 

numerical values of the parameters for the simulated 

wind turbine in this study can be found in Odgard et 

al. [5]. The suggested observer is based on the 

structure outlined in equation (13), with alterations 

made to the switching term indicated in equation 

(17). The process involves the application of an 

algorithm akin to the one elucidated in [22], the 

design parameters were set to be: 

Uw = 0.6I6 ,  Vw = I5, and δ = 1e−3 

 

The matrices P0 and D̃2 from (36) are given as: 
P0 =

[
 
 
 
 
0.0021 0.0010 0 0 0.0000
 0.0010 1.4926 0 0 0.0000
0 0 0.7158 3.7298 0
0 0 3.7298 35.1656 0

0.0000 0.0000 0 0 122.6318]
 
 
 
 

, 

D̃2 =

[
 
 
 
 
 
0 0 0
0 0 0
0 1.81e−8 0
0 0 1.234e2

0 0 0
50 0 0 ]

 
 
 
 
 

 

The associated gains from the observer 

representation in (13) are: 

Gl

=

[
 
 
 
 
 
488.7675 0.8309 0 0 −0.0000
0.8309 0.6756 0 0 0.0000
1.0412 0.0055 0 0 0.0000
0 0  3.1233  −0.3313 0
0 0  −0.3313 0.0636 0

−0.0000 0.0000 0 0 0.0082 ]
 
 
 
 
 

 , 

Gn

=

[
 
 
 
 
 
487.9009   −0.3226 0 0 −0.0000
 −0.3226 0.6702 0 0 −0.0000
1.0347 −0.0007 0 0 −0.0000
0 0 3.1233 −0.3313 0
0 0 −0.3313 0.0636 0

−0.0000 −0.0000 0 0 0.0082 ]
 
 
 
 
 

 

 

4. SIMULATION RESULTS 

 

The objective of this study is to reconstruct 

actuator faults in the generator/converter and pitch 

system. Firstly, these faults are considered separately 

and then simultaneously. To test the effectiveness of 

our fault reconstruction approach, a signal 

representing the fault was injected at the system 
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input, which was initially unknown to the system. 

The previously described method was then used to 

reconstruct the fault and evaluate the performance of 

the adopted reconstruction approach. The wind 

speed profile used in the simulation shown in Figure 

2, which is highly variable, is based on real wind 

speed data sourced from a wind farm [5]. 

 
Fig. 2. The stochastic wind speed profile 

taken into account during the simulation 

 

4.1. Faults separately 

Two scenarios involving hydraulic leakage faults 

have been established for the hydraulic pitch 

actuator: an extreme fault and a moderate fault. The 

pitch subsystem parameters, along with the 

associated fault indicators, can be found in Table 1. 

The first of these fault scenarios encompasses a 

sudden decrease in hydraulic pressure caused by a 

leak within the hydraulic system. The corresponding 

actual fault indicator is αf = 1. This fault is 

considered from 20s to 45s, during which the 

parameters ωn and ξ undergo a change in values, 

transitioning to  ωf and  ξ
f
, respectively. By 

employing the proposed SMO, the actuator fault  f̂ac 
is reconstructed. The fault indicator αf and its 

estimated 𝛼�̂� are presented in Figure 3. This figure 

clearly demonstrates the prompt detection and 

precise reconstruction of the fault , the maximal 

relative gap is 0,5%. During the moderate fault 

scenario, the fault indicator αf is assigned a value of 

0.7 from 50 s to 70 s. The estimated fault indicator 

αf̂ is depicted in Figure 4. Notably, the estimated 

indicator closely aligns with the actual one, resulting 

in a reasonably precise estimation of the pitch 

actuator parameters and , the maximal relative gap is 

0,7%. 

The generator fault is also simulated. It runs from 

75 s to 90 s. The fault is intermittent and introduces 

a consistent amplitude bias. The real generator fault 

fτg  and its estimated  fτg
̂ are illustrated in Figure 5. 

The acquired outcome demonstrates that the 

reconstructed fault closely and precisely mirrors the 

actual fault, the relative gap is: 3,3. 10−3%. 

 
Fig. 3. Fault indicator  𝛂𝐟 and its corresponding 

estimation 𝛂�̂� in the extreme fault case 

 
Fig. 4. Fault indicator  α_f and its 

corresponding estimation (α_f ) ̂ in the 

moderate fault case 

 

 
Fig. 5. Real generator fault f_(τ_g ) and its 

estimated  (f_(τ_g ) )  ̂

 

 
Fig. 6. Real and Estimated Simultaneous 

Faults: generator fault f_(τ_g ) and its 

estimation  (f_(τ_g ) ) ̂ (top), and fault 

indicator α_f and its estimation (α_f ) ̂  

(bottom). 

 

4.2. Faults simultaneously 

In this case, both the leakage faults in the pitch 

system and the fault in the generator are 

simultaneously treated. Figure 6 illustrates this 

situation: the leakage fault is treated in an extreme 

fault condition between 30 s and 50 s, while the fault 

affecting the generator torque occurs between 35 s 

and 55 s. Consequently, these two faults happen 

concurrently within the [35s, 50s] timeframe. The 

maximum relative gap for the leakage fault is 

determined to be 1.7% , whereas for the generator 

fault, it is calculated to be 3,4. 10−3%. Hence, the 

simulation results confirm the precise identification 

and reconstruction of the faults. This supports the 

modification introduced to the SMO, as mentioned 

in paragraph 3. 

 

5. CONCLUSION  

 

In this study, a sliding mode observer enhanced 

with a modified DIS is presented to estimate the 

pitch actuator fault and generator torque actuator 

fault in wind turbine systems. Two scenarios are 

detailed. In the first, separate faults are assessed, 

with the hydraulic leakage fault simulated under 

both extreme and moderate conditions, followed by 

the generator actuator fault. In the second scenario, 
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both the hydraulic leakage fault (under extreme 

conditions) and the generator torque actuator fault 

are simulated concurrently, using the same switching 

term of the SMO. Results indicate the accurate 

estimation of the hydraulic leakage fault using the 

introduced fault indicator and the precise 

reconstruction of the generator actuator fault. This 

underscores the efficacy of the modification made to 

the SMO's switching term. 
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